

WEEKLY TEST MEDICAL PLUS -02 TEST - 02 RAJPUR SOLUTION Date 30-06-2019

[CHEMISTRY]

46. Molarity =
$$\frac{w}{M_B} \times \frac{1000}{V(\text{in mL})}$$

$$^{\text{w}}$$
[Ca(OH)₂] = $\frac{0.5 \times 74 \times 500}{1000}$ = 18.5g

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_3O$$

74g Ca(OH)₂ = 100 g CaCO₃

$$18.5\text{gCa(OH)}_2 = \frac{100 \times 8.5}{74} = 25\text{gCaCO}_3$$

47. Molar mass of
$$C_{60}H_{122} = 842 \text{ g}$$

Mass of one molecule
$$=$$
 $\frac{842}{6.02 \times 10^{23}} = 842 \times 1.66 \times 10^{-24} = 1.4 \times 10^{-21} g$

48. 15 L H₂(g) at STP =
$$\frac{15}{22.4} \times 6.02 \times 10^{23} = 4.03 \times 10^{23}$$
 molecules

15 L N₂(g) at STP =
$$\frac{15}{22.4} \times 6.02 \times 10^{23} = 1.34 \times 10^{23}$$
 molecules

$$0.5 \text{ g H}_2(\text{g}) \text{ at STP} = \frac{0.5}{2} \times 6.02 \times 10^{23} = 1.5 \times 10^{23} \text{ molecules}$$

10 g
$$O_2(g)$$
 at STP = $\frac{10}{32} \times 6.02 \times 10^{23} = 1.88 \times 10^{23}$ molecules

49.
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O$$

Volume of
$$O_2(g)$$
 left = 20 – 15 = 5 mL

50. Average atomic weigth
$$=$$
 $\frac{(200 \times 90) + (199 \times 8) + (202 \times 2)}{100} = 199.96 = 200$ amu

51.
$$CH_3OH + \frac{3}{2}O_2 \rightarrow CO_2 + 2H_2O; \Delta H = -723kJ$$

1.5 mol
$$O_2 = 723$$
 kJ (evolved)

1 mole
$$O_2 = \frac{723}{1.5} = 482 \text{ kJ}$$

52.
$$100amu = (100) \left(\frac{1g}{6.022 \times 10^{23}} \right) = 1.66 \times 10^{-22} g$$

Mass of 7.0 x
$$10^{22}$$
 molecules = $\frac{7.0 \times 10^{22}}{6.022 \times 10^{23}} \times 46h = 5.35g$

Mass of
$$8.0 \times 10^{-1}$$
 mol = 0.8×46 g = 36.8 g

53.
$$C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$$

54.
$$C = \frac{38.71}{12} = 3.22, H = 9.67, O = \frac{51.62}{16} = 3.22$$

Simple ratio C : H : O = 1 : 3 : 1Empirical formula = CH_3O

55.
$$H_2$$
 + $\frac{1}{2}O_2 \rightarrow H_2O$

1 mol
$$\frac{1}{2}$$
 mol 1 m

$$\frac{10}{2} = 5 \text{ mol}$$
 $\frac{64}{32} = 2 \text{mol}$?

- \Rightarrow O_2 is limiting reagent
- \Rightarrow Moles of H₂O = 4 moles

56. Ratio of atoms C:H::
$$\frac{85.6}{12}$$
: $\frac{14.4}{1}$:: 7.13:14.4::1:2

Simplest formula: CH₂

$$M = \frac{W_B}{V} \times \frac{100}{M_B}$$

$$W_{B} = \frac{2.5 \times 300 \times 90}{1000} = 67.5g$$

- 58. Number of atoms = $3 \times$ Number of moles \times Avogadro Number = $3 \times 0.1 \times 6.02 \times 10^{23} = 1.806 \times 10^{23}$
- 59. $44 \text{ g CO}_2 = 1 \text{ mole} = \text{N}_{\text{A}} \text{ molecules}$ $48 \text{ g O}_2 = 1.5 \text{ mole} = 1.5 \text{ N}_{\text{A}} \text{ molecules}$ $8 \text{ g H}_2 = 4 \text{ mole} = 4 \text{N}_{\text{A}} \text{ molecules}$ $64 \text{ g SO}_2 = 2 \text{ mole} = 2 \text{N}_{\text{A}} \text{ molcules}$

60. Molarity =
$$\frac{\text{Moles}}{\text{V in mL}} = \frac{\left(6.02 \times 10^{20}\right) / \left(6.02 \times 10^{23}\right)}{\left(100\right) / \left(1000\right)} = 0.01 \text{M}$$

61.
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$

$$16 \text{ g oxygen} = 24 \text{ g Mg}$$

$$0.56 \text{ g oxygen } = \frac{24 \times 0.56}{16} = 0.84 \text{ g Mg}$$

Given mass of Mg is 1.0 g which is surplus by 1.0 - 0.84 = 0.16 g (Left)

62. Pressure exerted by H_2 = mole fraction of H_2 × total pressure Suppose w gram of both CH_4 and H_2 were taken.

Moles of
$$H_2 = \frac{w}{M.W} = \frac{w}{2}$$
; Moles of $CH_4 = \frac{w}{16}$

Mole fraction
$$H_2 = \frac{w/2}{\frac{w}{2} + \frac{w}{16}} = \frac{8}{9}$$

Pressure exerted by $H_2 = \frac{8}{9} \times \text{total pressure}$

63.
$$\underset{100g}{\mathsf{CaCO}_3} \longrightarrow \mathsf{CaO} + \underset{22.4\mathsf{LatSTP}}{\mathsf{CO}_2}$$

$$22.4 L CO_2 = 100 g CaCO_3$$

$$44.8 L CO_2 = \frac{100 \times 44.8}{22.4} = 200g CaCO_3$$

For the use of 80 g CaCO₃, the amount taken = 100 g

For the use of 200 g CaCO₃, the amount taken $=\frac{100\times200}{80}=250g$

The averge isotopic mass or atomic mass =
$$\sum m_i \times \frac{x_i}{100}$$

where $m_i = mass of i^{th} isotope$, $x_i = abundance of i^{th} isotope$

$$\therefore \quad \text{Atomic mass} = 54 \times \frac{5}{100} + 56 \times \frac{90}{100} + 57 \times \frac{5}{100}$$

$$=\frac{0.33}{100}\times67200=22.176g$$

65.

No. of moles of Fe atoms per mole of haemoglobin = $\frac{221.76}{56}$

$$= 3.96 = 4$$
 (whole number)

66.
$$490 \text{ mg H}_2\text{SO}_4 = 490 \times 10^{-3} \text{ g H}_2\text{SO}_4 = \frac{490 \times 10^{-3}}{98} \text{mol}$$

$$= \frac{490 \times 10^{-3} \times 6.02 \times 10^{23}}{98}$$
 molecules = 3.01 x 10²¹ molecules

Molecules left over = $(3.01 \times 10^{21}) - (10^{20}) = 3.01 \times 10^{-21} - 0.1 \times 10^{21}$ = $(3.01 - 0.1) \times 10^{21} = 2.91 \times 10^{21}$

67.
$$CH_4 + O_2 \rightarrow CO_2 + 2H_2O$$

22400 mL of methane requires = 20 mL of oxygen.

This means that 20 mL of methane will burn completely using 20 mL of oxygen.

Volume of the gas left will be of oxygen only = (50 - 20) = 30 mL

68.
$$m = \frac{m}{d - M(M_B kg)} = \frac{0.5}{1.02 - 0.5 \times \frac{40}{1000}} = \frac{0.5}{1.02 - 0.02} = 0.5$$

69.
$$u_{\text{urea}} = \frac{15}{60} = \frac{1}{4} = 0.25$$

$$u_{H_2O} = \frac{175.5}{18} = 9.75$$

$$\chi_{\text{urea}} = \frac{0.25}{0.25 + 9.75} = \frac{0.25}{10} = 0.025$$

70. 11.11 moles of urea in 1000 g water, i.e., 55.55 moles of H₂O.

$$\chi_{urea} = \frac{11.11}{11.11 + 55.55} = \frac{1}{6} = 0.17$$

$$71. \hspace{1cm} M = \frac{10x\%d}{M_{\text{B}}}$$

$$\Rightarrow$$
 d = $\frac{MM_B}{10x\%} = \frac{3.6 \times 98}{10 \times 29} = 1.216g \text{ mL}^{-1}$

72. Molarity =
$$\frac{10xd}{M_p} = \frac{10 \times 98 \times 1.96}{98} = 19.6M$$

Normality of $H_2SO_4 = 2 \times Molarity = 2 \times 19.6 = 39.2 \text{ N}$

73. 1 L or 1000 mL of 0.001 M HCl solution contains 0.001 mole of Cl⁻ions

∴ 100 mL of 0.001 M HCl solution will contain =
$$\frac{0.001}{10}$$
 mol of Cl⁻ions

1 mol of Cl⁻ ions = 6.023×10^{23} Cl⁻ ions [... Avogadro's law]

$$10^{-4}$$
 mol of Cl⁻ = $6.022 \times 10^{23} \times 10^{-4}$ Cl⁻ ions 6.022×10^{19} Cl⁻ ions

74. Let the mass of $O_2 = x$ and that of $N_2 = 4x$

No. of molecules of
$$O_2 = \frac{x}{32}$$

No. of molecules of
$$N_2 = \frac{4x}{28} = \frac{x}{7}$$

Ration
$$\frac{x}{32}$$
: $\frac{x}{7}$ or 7:32

- 75. The ratio of number of molecules is the same as the ratio of number of their moles, For the same weight x, ratio of number of molecules of O₂ and SO₂ will be
- 76. Ratio fo atoms $C:H:CI::\frac{47.5}{12}:\frac{2.54}{1}:\frac{50}{35.5}::3.96:2.54:1.41::2.8:1.8:1$::14:9:5Empirical formula = $C_{14}H_0CI_5$
- 77. 300 mL of a gas weighs 0.368 g

1 mL of a gas will weigh =
$$\frac{0.368}{300}$$
g

22400 mL of a gas will weight =
$$\frac{0.368}{300} \times 22400 = 27.477 \approx 27.5 \text{ g}$$

- 78. Gram molecular mass of NH₃ is 7 g.
 - \therefore No. of molecules in 4.25 g of NH₃ = $\frac{4.25}{17}$ N_A = $\frac{N_A}{4}$

Now, one molecule of NH₃ contans 4 atoms

$$\therefore \quad \frac{N_A}{4} \text{ molecules contian } \frac{N_A}{4} \times 4 = N_A \text{ atoms}$$

Again, 32 g of
$$O_2 = N_A$$
 molecules = $2N_A$ atoms

$$\therefore 8 \text{ g of } O_2 = \frac{N_A}{32} \times 8 = \frac{N_A}{4} \text{ molecules } \frac{2N_A}{32} \times 8 = \frac{N_A}{2} \text{ atoms}$$

On the other hand,

$$2g \text{ of } H_2 = N_{\Delta} \text{ molecules} = 2N_{\Delta} \text{ atoms}$$

4g of He =
$$N_{\Delta}$$
 atoms [::gram atomic mass of He = 4g]

79. $CaCO_3 + 2HCI \rightarrow CaCI_2 + H_2O + CO_2$ 100 g of CaCO₃ gives 1 mole or 6.023 × 10²³ molecules of CO₂

$$10^{-3} \text{g of CaCO}_3 \text{ gives} = \frac{6.023 \times 10^{23}}{100} \times 10^{-3}$$

= 6.023×10^{18} molecules of CO₂

Number of atoms in 800 mg of Ca = $\frac{800 \times 10^{-3}}{40} \times N_A = 0.02N_A$ atoms 80. N_{Δ} atom of neon are present in 22.4 L

 \therefore 0.02 N_A atoms of neon are present in $=\frac{22.4}{N_A} \times 0.02 \times N_A = 0.448L = 448cm^3$

Ammonium dichromate is (NH₄)₂Cr₂O₇. 81. 1 mole consists of 2 atoms of N, 8 atoms of H, 2 atoms of Cr, and 7 atoms of O. So, total no. of atoms = $(2 + 8 + 2 + 7) \times 6.023 \times 10^{23}$ $= 114.437 \times 10^{23}$

82.
$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$

83. Moles of water produced =
$$\frac{0.72}{18} = 0.04$$

Moles of
$$CO_2$$
 produced = $\frac{3.08}{44}$ = 0.07

Equation for combustion of an unknown hydrocarbon, C,H, is

$$C_xH_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

$$\Rightarrow$$
 x = 0.07 and $\frac{y}{2} = 0.04 \Rightarrow y = 0.08$ and $\frac{x}{y} = \frac{0.07}{0.08} = \frac{7}{8}$

:. The empirical formula of the hydrocarbon is C₇H₈

84.
$$\frac{16}{2x+16} = 0.364$$
$$16 = 0.728x + 5.824 \text{ or } x = 13.978$$

For MO =
$$\frac{16}{13.978 + 16} \times 100 = 534\%$$

85.
$$CH_{3}CH = CH_{2} + 9 / 2O_{2} \rightarrow 3CO_{2} + 3H_{2}O = 54g$$

$$54g \text{ pf } H_{2}P = 42 \text{ g of propene}$$

$$\therefore$$
 24 g of H₂O = $\frac{42}{54} \times 27 = 21g$

86.
$$(COOH2) + 2NaOH \rightarrow (COONa)2 + 2H2O$$

Mol. of mass of NaOH = 40 g mol^{-1}

No. of moles in 0.064 g of NaOH =
$$\frac{0.064}{40}$$
 = 0.0016

No. of mole of oxalic acid
$$= \frac{0.0016}{2} = 8 \times 10^{-4}$$

Volume of solution (in L) =
$$\frac{25}{1000}$$

Hence, molarity =
$$\frac{\text{No. of moles of solute}}{\text{Volume of solution (in L)}}$$

$$= 8 \times 10^{-4} \times \frac{1000}{25} = 0.032M$$

87. $100 \text{ cc of } 0.5 \text{ M} \text{ ethyl alcohol} = 10 \times 0.5 \times 10^{-3} \text{ mole} = 5 \times 10^{-2} \text{ mole}$

Weight of entryl alcohol required = $5 \times 10^{-2} \times 46g = 2.3 g$ [: molecular weight of ethyl alcohol = 46]

$$\therefore d = \frac{Mass}{Volume} \Rightarrow 1.15 = \frac{2.3}{V} \Rightarrow V = \frac{2.30}{1.15} = 2$$

- :. Volume required = 2cc
- 88. Normality = Molarity × acidity of base $Ca(OH)_2 = N_1 = 0.1 \times 2 = 0.2$; $N_2 = 0.1$ $N_1V_1 = N_2V_2$ $Ca(OH)_2HCI$

$$0.2 \times V_1 = 0.1 \times 10 \Rightarrow V_1 = \frac{0.1 \times 10}{0.2} = 5 \text{ mL}$$

89. Number of gram equivalents of HCI = $\frac{\text{Normality} \times \text{V}}{1000} = \frac{0.1 \times 100}{1000} = 0.01$

Number of gram equivalents of metal carbonate = number of gram equivalents of HCI

$$\frac{\text{W}}{\text{E}} = 0.01$$
 \Rightarrow $\frac{2}{\text{E}} = 0.01$ \Rightarrow $\text{E} = 200$

90. Equivalent weight = $\frac{\text{Mass of metal} \times 1120}{\text{Volume of hydrogen in mL}}$

Given, mass of metal = 0.32 g Volume of hydrogen at NTP = 112 mL

Equivalent weight =
$$\frac{0.32 \times 11200}{112} = 32$$